Propagation of neuronal micronuclei regulates microglial characteristics.
Sarasa Yano, Natsu Asami, Yusuke Kishi, Ikuko Takeda, Hikari Kubotani, Yuki Hattori, Ayako Kitazawa, Kanehiro Hayashi, Ken-ichiro Kubo, Mai Saeki, Chihiro Maeda, Chihiro Hiraki, Rin-ichiro Teruya, Takumi Taketomi, Kaito Akiyama, Tomomi Okajima-Takahashi, Ban Sato, Hiroaki Wake, Yukiko Gotoh, Kazunori Nakajima, Takeshi Ichinohe, Takeshi Nagata, Tomoki Chiba, Fuminori Tsuruta*
Nat. Neurosci., in press.
●De novo monoallelic Reelin missense variants cause dominant neuronal migration disorders via a dominant-negative mechanism
Martina Riva, Sofia Ferreira, Kotaro Hayashi, Yoann Saillour, Vera P. Medvedeva, Takao Honda, Kanehiro Hayashi, Claire Altersitz, Shahad Albadri, Marion Rosello, Julie Dang, Malo Serafini, Frédéric Causeret, Olivia J. Henry, Charles-Joris Roux, Céline Bellesme, Elena Freri, Dragana Josifova, Elena Parrini, Renzo Guerrini, Filippo Del Bene, Kazunori Nakajima, Nadia Bahi-Buisson, and Alessandra Pierani*
(☆Filippo Del Bene, Kazunori Nakajima, and Nadia Bahi-Buisson contributed equally to this work)
J Clin Invest. 2024 Jul 9:e153097.
doi: 10.1172/JCI153097. Online ahead of print.
PMID: 38980724
Keiko Morimoto*, Rikuo Takahashi, Goro Takahashi, Michio Miyajima, and Kazunori Nakajima*
Inflamm. Regen., 44, article number 24 (2024).
doi: 10.1186/s41232-024-00336-3
Time-lapse imaging of migrating neurons and glial progenitors in embryonic mouse brain slices.
Hidenori Tabata*, Koh-ichi Nagata, and Kazunori Nakajima*
J. Vis. Exp., 205, e66631 (2024).
doi: 10.3791/66631
Michio Miyajima*, Hidenori Tabata, and Kazunori Nakajima*
Neural Regen. Res., 19 (3), 471-472 (2024).
<originally published on July 20, 2023>
doi: 10.4103/1673-5374.380886
●Interactions between neural cells and blood vessels in central nervous system development.
Keiko Morimoto, Hidenori Tabata, Rikuo Takahashi, and Kazunori Nakajima*
BioEssays, 2300091 (2023).
https://doi.org/10.1002/bies.202300091
Heterozygous Dab1 null mutation disrupts neocortical and hippocampal development.
Takao Honda*, Yuki Hirota, and Kazunori Nakajima*
eNeuro, 10 (4), 0433-22.2023 1-24 (2023).
Featured on the journal’s homepage carousel.
Featured in “Snapshots in Neuroscience” on the eNeuro blog
Selected as “Featured Research” and on the Journal’s Twitter account.
(https://twitter.com/SfNJournals/status/1678746483124740103)
doi: 10.1523/ENEURO.0433-22.2023
●A unique “reversed” migration of neurons in the developing claustrum.
Kota Oshima, Satoshi Yoshinaga, Ayako Kitazawa, Yuki Hirota, Kazunori Nakajima*, and Ken-ichiro Kubo*
J. Neurosci., 43 (5), 693-708 (2023).
(K. Nakajima and K. Kubo are the corresponding authors)
Featured in “Featured Research” and on the Journal’s Twitter account.
doi: 10.1523/JNEUROSCI.0704-22.2022
・医学部生の大島鴻太君が単独筆頭著者になっている論文です。「プレスリリース」
・2023年1月12日 時事メディカルにて紹介「未知の脳領域「前障」の形成過程を解明 〜現役医学部生による研究成果〜 慶應義塾大学医学部、東京慈恵会医科大学」https://medical.jiji.com/topics/2891
・2023年1月20日 日刊工業新聞27面にて紹介 未解明の脳領域「前障」 慶大など形成過程解明
Koji Oishi*, Kazunori Nakajima, and Jun Motoyama
J. Dev. Biol., 10 (4), 50 (2022).
doi: 10.3390/jdb10040050
Erratic and Blood Vessel-Guided Migration of Astrocyte Progenitors in the Cerebral Cortex.
Hidenori Tabata*, Megumi Sasaki, Masakazu Agetsuma, Hitomi Sano, Yuki Hirota, Michio Miyajima, Kanehiro Hayashi, Takao Honda, Masashi Nishikawa, Yutaka Inaguma, Hidenori Ito, Hirohide Takebayashi, Masatsugu Ema, Kazuhiro Ikenaka, Junichi Nabekura, Koh-ichi Nagata, and Kazunori Nakajima*
Nat. Commun., 13 (1), 6571 (2022).
Featured in “Editors’ Highlights” as one of the most important articles.
doi: 10.1038/s41467-022-34184-x「プレスリリース」
「The Penmark」December 2022 | No. 30に掲載されました。
・2022年12月7日 QLifePro医療NEWSにて紹介「脳を構成する主要な細胞「アストロサイト」が脳内に広く分布する仕組み解明-慶大ほか」
・2022年12月7日 マイナビニュースにて紹介「慶大など、神経機能制御細胞「アストロサイト」が脳内に広がる仕組みを解明」
Development of intensiometric indicators for visualizing N-cadherin interaction across cells.
Takashi Kanadome, Kanehiro Hayashi, Yusuke Seto, Mototsugu Eiraku, Kazunori Nakajima, Takeharu Nagai, and Tomoki Matsuda*
Commun. Biol., 5 (1), 1065 (2022).
doi: 10.1038/s42003-022-04023-2
Yukina Morimoto, Ayako Tokumitsu, Takefumi Sone, Yuki Hirota, Ryota Tamura, Ayuna Sakamoto, Kazunori Nakajima, Masahiro Toda, Yutaka Kawakami, Hideyuki Okano, and Shigeki Ohta*
Neurochem. Res., 47 (9), 2741-2756 (2022).
doi: 10.1007/s11064-022-03629-6
Satoshi Yoshinaga, Takao Honda, Ken-ichiro Kubo*, and Kazunori Nakajima*
Neurosci. Res.,180 (July 2022), 23-35 (2022).
doi: 10.1016/j.neures.2022.03.011
Debabrata Hazra, Satoshi Yoshinaga, Keitaro Yoshida, Norio Takata, Kenji F. Tanaka, Ken-ichiro Kubo*, and Kazunori Nakajima*
Cereb. Cortex, 32 (23), 5243-5258 (2022).
・筆頭著者のハズラ君が、学部生時代に中心になって行った研究です。
Satoshi Yoshinaga, Minkyung Shin, Ayako Kitazawa, Kazuhiro Ishii, Masato Tanuma, Atsushi Kasai, Hitoshi Hashimoto, Ken-ichiro Kubo*, and Kazunori Nakajima*
iScience, 24 (4), Article 102277 (2021).
doi: 10.1016/j.isci.2021.102277
Hironori Takeda, Yoshitaka Kameo, Takahiro Yamaguchi, Kazunori Nakajima, and Taiji Adachi
J. Biomech. Sci. Eng., 16 (1), Paper No.20-00516 (2021).
Awarded “2021 JBSE Graphics of the Year Award”
doi: 10.1299/jbse.20-00516
Reelin-Nrp1 interaction regulates neocortical dendrite development in a context-specific manner.
Takao Kohno, Keisuke Ishii, Yuki Hirota, Takao Honda, Makoto Makino, Takahiko Kawasaki, Kazunori Nakajima, and Mitsuharu Hattori.
J. Neurosci., 40 (43), 8248-8261 (2020).
Himari Ogino, Tsuzumi Nakajima, Yuki Hirota, Kohki Toriuchi, Mineyoshi Aoyama, Kazunori Nakajima, and Mitsuharu Hattori.
J. Neurosci., 40 (40), 7625-7636 (2020).
Two-photon voltage imaging of spontaneous activity from multiple neurons reveals network activity in brain tissue.
Binglun Li, Mariya Chavarha, Yuho Kobayashi, Satoshi Yoshinaga, Kazunori Nakajima, Michael Z. Lin, and Takafumi Inoue
iiScience, 23 (8), Article 101363 (2020).
Cell polarity and initiation of migration. (Chapter 13)
Kanehiro Hayashi, Katsutoshi Sekine, Hidenori Tabata, and Kazunori Nakajima*
Comprehensive Developmental Neuroscience: Cellular Migration and Formation of Axons and Dendrites, 2nd Edition (Senior Editors-in-Chief: John Rubenstein, Pasko Rakic), Elsevier, 289-304 (2020).
VLDLR is not essential for Reelin-induced neuronal aggregation but suppresses neuronal invasion into the marginal zone.
Yuki Hirota and Kazunori Nakajima
Development, 147 (12), dev189936 (2020).
Selected to appear as a “Research Highlight” in the journal
doi:10.1242/dev.189936「プレスリリース」
・2020年6月16日 一般社団法人日本私立大学連盟公式ホームページにて紹介 慶應義塾大学 精神神経疾患の関連分子が神経細胞を正しく配置させるしく みを発見-脳形成の複数の過程を単一分子がコントロールできるメカニズムを解明-
・2020年6月17日 QLifePro医療ニュースにて紹介「精神神経疾患関連分子「リーリン」が、神経細胞の集合と停止を制御する仕組みを発見 −慶大」
・2020年6月17日 医療関係者向け情報サイトA-CONNECTにて紹介 精神神経疾患関連分子「リーリン」が、神経細胞の集合と停止を制御する仕組みを発 見-慶大
Neuron-derived VEGF contributes to cortical and hippocampal development independently of VEGFR1/2-mediated neurotrophism. Keisuke Okabe, Hugh Fukada, Ikue Tai-Nagara, Tomofumi Ando, Takao Honda, Kazunori Nakajima, Norihiko Takeda, Guo-Hua Fong, Masatsugu Ema, and Yoshiaki Kubota. Dev. Biol., 459 (2), 65-71 (2020).
(K. Okabe and H. Fukada are co-first authors)
Role of the immune system in the development of the central nervous system. Keiko Morimoto and Kazunori Nakajima. Front. Neurosci, 13, Article 916 (2019).
Timing and shaping mechanisms of neural development. (Editorial) Ryoichiro Kageyama and Kazunori Nakajima. Neurosci. Res., 138, 1-2 (2019).
Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex. Minkyung Shin, Ayako Kitazawa, Satoshi Yoshinaga, Kanehiro Hayashi, Yukio Hirata, Colette Dehay, Ken-ichiro Kubo, and Kazunori Nakajima. J. Comp. Neurol., 527(10):1577-1597 (2019). (M. Shin and A. Kitazawa are co-first authors)
Drebrin-like (Dbnl) controls neuronal migration via regulating N-cadherin expression in the developing cerebral cortex. Seika Inoue, Kanehiro Hayashi, Kyota Fujita, Kazuhiko Tagawa, Hitoshi Okazawa, Ken-ichiro Kubo, and Kazunori Nakajima. J. Neurosci., 39(4):678-691 (2019).
Reelin. Kanehiro Hayashi, Seika Inoue, and Kazunori Nakajima. Encyclopedia of Signaling Molecules (Sangdun Choi, ed.), Springer, New York, NY. doi.org/10.1007/978-1-4614-6438-9_101808-1 (2018).
Subtype specification of cerebral cortical neurons in their immature stages. Koji Oishi and Kazunori Nakajima. Neurochem. Res., 43 (1), 238-244 (2018).
ApoER2 controls not only neuronal migration in the intermediate zone, but also termination of migration in the developing cerebral cortex. Yuki Hirota, Ken-ichiro Kubo, Takahiro Fujino, Tokuo T. Yamamoto, and Kazunori Nakajima. Cereb. Cortex, 28 (1), 223-235 (2018).
(Adopted for the journal cover illustration)
CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. Hironobu Okuno,Francois Renault Mihara, Shigeki Ohta, Kimiko Fukuda, Kenji Kurosawa, Wado Akamatsu, Tsukasa Sanosaka, Jun Kohyama, Kanehiro Hayashi, Kazunori Nakajima, Takao Takahashi, Joanna Wysocka, Kenjiro Kosaki, and Hideyuki Okano. eLife, 6, e21114 (2017).
Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone. Kei-ichi Katayama, Kanehiro Hayashi, Seika Inoue, Kazushige Sakaguchi, and Kazunori Nakajima. Brain Struct. Funct., 222 (9), 4283-4291 (2017).
Dendritic homeostasis disruption in a novel frontotemporal dementia mouse model expressing cytoplasmic fused in sarcoma. Gen Shiihashi, Daisuke Ito, Itaru Arai, Yuki Kobayashi, Kanehiro Hayashi, Shintaro Otsuka, Kazunori Nakajima, Michisuke Yuzaki, Shigeyoshi Itohara, and Norihiro Suzuki. EBioMedicine, 24 (October) 102-115 (2017).
Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse. Eiki Kimura, Ken-ichiro Kubo, Toshihiro Endo, Wenting Ling, Kazunori Nakajima, Masaki Kakeyama, and Chiharu Tohyama. PLoS One, 12 (8), e0183497 (2017).
A crossroad of neuronal diversity to build circuitry. Satoshi Yoshinaga and Kazunori Nakajima. Science, 356 (6336), 376-377 (2017).
Association of impaired neuronal migration with cognitive deficits in extremely preterm infants. Ken-ichiro Kubo, Kimiko Deguchi, Taku Nagai, Yukiko Ito, Keitaro Yoshida, Toshihiro Endo, Seico Benner, Wei Shan, Ayako Kitazawa, Michihiko Aramaki, Kazuhiro Ishii, Minkyung Shin, Yuki Matsunaga, Kanehiro Hayashi, Masaki Kakeyama, Chiharu Tohyama, Kenji F. Tanaka, Kohichi Tanaka, Sachio Takashima, Masahiro Nakayama, Masayuki Itoh, Yukio Hirata, Barbara Antalffy, Dawna D. Armstrong, Kiyofumi Yamada, Ken Inoue, and Kazunori Nakajima. JCI Insight, 2 (10), e88609 (2017). (K. Kubo and K. Deguchi are co-first authors) (DOI: 10.1172/jci.insight.88609)「プレスリリース」
• 2017年5月19日 日刊工業新聞 朝刊21面に掲載 「超早産児の認知機能障害 脳神経移動障害と関連 慶大」
• 2017年5月19日 長崎新聞 朝刊24面に掲載 「虚血が神経細胞に影響 超早産児の認知機能障害 米医学雑誌に発表」
• 2017年5月23日 QLifePro医療NEWSにて紹介 「超早産児の認知機能障害、脳神経細胞の移動障害が関与-慶大」
• 2017年5月24日 医療介護CB newsにて紹介 「超早産児の認知機能障害に脳神経移動障害が関与 慶大・NCNP研究グループが解明」
• 2017年5月31日 日経産業新聞 朝刊8面に掲載 「超早産児 脳の血液不足 慶大など 機能障害の仕組み解明」
• 2017年6月2日 NHKニュース にて紹介 「超早産児の脳障害 神経細胞が正常な位置に到達せず」
• 2017年6月9日 科学新聞 6面に掲載 「超早産児の認知機能障害 脳神経細胞の移動障害が関与」
• 2017年6月25日 中国新聞 朝刊11面に掲載 「脳の血流不足が要因 超早産の認知機能障害 神経細胞正常に移動せず」
• 2017年7月22日 河北新報 朝刊21面に掲載 「超早産で出生 認知機能障害の赤ちゃん 神経細胞正常に移動せず -慶大などのチーム解明- 不十分な血流が要因」
• 2017年7月27日、Keio Research Highlightsにて紹介 「Born before their time」
Control of neuronal migration and aggregation by Reelin signaling in the developing cerebral cortex. Yuki Hirota and Kazunori Nakajima. Front. Cell Dev. Biol., 5, Article 40 (2017).
Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse. Eiki Kimura, Ken-ichiro Kubo, Toshihiro Endo, Kazunori Nakajima, Masaki Kakeyama, and Chiharu Tohyama. J. Toxicol. Sci., 42 (1), 25-30 (2017).
Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development. Yuki Matsunaga, Mariko Noda, Hideki Murakawa, Kanehiro Hayashi, Arata Nagasaka, Seika Inoue, Takaki Miyata, Takashi Miura, Ken-ichiro Kubo, and Kazunori Nakajima. Proc. Natl. Acad. Sci. U.S.A., 114 (8), 2048-2053 (2017). (Y. Matsunaga and M. Noda are co-first authors)「プレスリリース」
The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy. Haruka Sudo and Kazunori Nakajima. Oncotarget , 7 (33), 53712-53734 (2016).
SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex. Stephanie Tankou, Kazuhiro Ishii, Christina Elliott, Krishna C. Yalla, Jon P. Day, Keiko Furukori, Ken-ichiro Kubo, Nicholas J. Brandon, Qiyi Tang, Gary Hayward, Kazunori Nakajima, Miles D. Houslay, Atsushi Kamiya, George Baillie, Koko Ishizuka, and Akira Sawa. Mol. Neuropsychiatry, 2 (1), 20-27 (2016).
ADP ribosylation factor 6 regulates neuronal migration in the developing cerebral cortex through FIP3/Arfophilin-1-dependent endosomal trafficking of N-cadherin. Yoshinobu Hara, Masahiro Fukaya, Kanehiro Hayashi, Takeshi Kawauchi, Kazunori Nakajima, and Hiroyuki Sakagami. eNeuro, 3 (4) e0148-16.2016, 1-20 (2016) .
DISC1 a key molecular lead in psychiatry and neurodevelopment: No-More Disrupted-in-Schizophrenia. Minae Niwa, Tyler Cash-Padgett, Ken-Ichiro Kubo, Atsushi Saito, Kazuhiro Ishii, Akiko Sumitomo, Yu Taniguchi, Koko Ishizuka, Hanna Jaaro-Peled, Toshifumi Tomoda, Kazunori Nakajima, Akira Sawa, and Atsushi Kamiya. Mol. Psychiatry, 21 (11), 1488-1489 (2016).
Reelin and neuropsychiatric disorders. Kazuhiro Ishii, Ken-ichiro Kubo, and Kazunori Nakajima. Front. Cell. Neurosci., 10, Article 229 (2016).
Proper level of cytosolic Disabled-1, which is regulated by dual nuclear translocation pathways, is important for cortical neuronal migration. Takao Honda and Kazunori Nakajima. Cereb. Cortex, 26 (7), 3219-3236 (2016).
(Adopted for the journal cover illustration)
Mechanisms of Neuronal Migration during Corticogenesis. (Editorial) Chiaki Ohtaka-Maruyama, Kazunori Nakajima, Alessandra Pierani, Nobuaki Maeda. Front. Neurosci., 10, Article 172 (2016).
PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Yasuhiro Itoh, Maiko Higuchi, Koji Oishi, Yusuke Kishi, Tomohiko Okazaki, Hiroshi Sakai, Takaki Miyata, Kazunori Nakajima, and Yukiko Gotoh. Proc. Natl. Acad. Sci. U.S.A., 113 (21), E2955-2964 (2016).
Mutually repressive interaction between Brn1/2 and Rorb contributes to establishment of neocortical layer 2/3 and layer 4. Koji Oishi, Michihiko Aramaki, and Kazunori Nakajima. Proc. Natl. Acad. Sci. U.S.A., 113 (12), 3371-3376 (2016). 「プレスリリース」
Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. Koji Oishi, Nao Nakagawa, Kashiko Tachikawa, Shinji Sasaki, Michihiko Aramaki, Shinji Hirano, Nobuhiko Yamamoto, Yumiko Yoshimura, and Kazunori Nakajima. eLife, 5, e10907 (2016).
(DOI: dx.doi.org/10.7554/eLife.10907) 「プレスリリース」
-
2016年2月25日 日刊工業新聞 朝刊25面及び電子版に掲載
「大脳皮質神経細胞の種類、配置場所で変化-慶大が解明」 -
2016年2月25日 QLifePro医療NEWSにて紹介
「脳の神経細胞、置かれた場所の環境で別の種類に変化 -慶大」 -
2016年2月26日 KJB検査技師人材バンク臨床検査技師ニュースに掲載
「脳の神経細胞は配置された環境に応じて別の神経細胞に変化する」 -
2016年2月28日 マイナビにて紹介
「慶應義塾大学、脳の神経細胞は配置された場所の環境に応じて変化することを発見」 -
2016年2月29日 大学ジャーナルオンラインにて紹介
「慶応義塾大学 脳内の配置場所で神経細胞が変化することを発見」 -
2016年3月6日 バイオの杜にて紹介
「脳の神経細胞は置かれた環境によって異なる細胞に変化しうる」
In utero bisphenol A exposure induces abnormal neuronal migration in the cerebral cortex of mice. Wenting Ling, Toshihiro Endo, Ken-ichiro Kubo, Masaki Kakeyama, Kazunori Nakajima, and Chiharu Tohyama. Front. Endocrinol., 7, Article 7 (2016).
Propagation of focal imbalance through neuronal circuits. Ken-ichiro Kubo, Kazuhiro Ishii, Masaki Kakeyama, and Kazunori Nakajima. Author Response to the Journal Club article in J. Neurosci. (M.Sare, J. Neurosci., 36 (4), 1051-1052, 2016) about our published paper (Ishii et al., J. Neurosci. 2015).
http://www.jneurosci.org/content/36/4/1051?etoc
Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. Eiki Kimura, Ken-ichiro Kubo, Chieri Matsuyoshi, Seico Benner, Mayuko Hosokawa, Toshihiro Endo, Wenting Ling, Masanobu Kohda, Kazuhito Yokoyama, Kazunori Nakajima, Masaki Kakeyama, and Chiharu Tohyama. Neurotoxicol. Teratol., 52 (Pt A), 42-50 (2015).
The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. Shigeaki Kanatani, Takao Honda, Michihiko Aramaki, Kanehiro Hayashi, Ken-ichiro Kubo, Mami Ishida, Daisuke H. Tanaka, Takeshi Kawauchi, Katsutoshi Sekine, Sayaka Kusuzawa, Takahiko Kawasaki, Tatsumi Hirata, Hidenori Tabata, Per Uhlén, and Kazunori Nakajima. Proc. Natl. Acad. Sci. U.S.A., 112 (36), E4985-94 (2015). 「プレスリリース」
-
2015年8月31日 日経産業新聞朝刊9面にて紹介
「脳形成の仕組み解明 慶応大、誘導たんぱく質 神経細胞」 -
2015年8月28日 QLifePro医療NEWSにて紹介
「脳深部で生まれた神経細胞がどのように脳を形成するかを明らかに -慶大」 -
2015年8月26日 キャリアブレイン医療介護CB newsにて紹介
「脳形成の一端解明、精神疾患究明に期待も - 慶大医学部の研究チーム」 -
2015年8月25日 日経プレスリリースに掲載
「慶応大、胎生期における脳の形成メカニズムの一端を解明」
Analysis of cardiomyocyte movement in the developing murine heart. Hisayuki Hashimoto, Shinsuke Yuasa, Hidenori Tabata, Tomohisa Seki, Shugo Tohyama, Nozomi Hayashiji, Fumiyuki Hattori, Dai Kusumoto, Akira Kunitomi, Makoto Takei, Shin Kashimura, Gakuto Yozu, Masaya Shimojima, Chikaaki Motoda, Naoto Muraoka, Kazunori Nakajima, Asako Sakaue-Sawano, Atsushi Miyawaki, and Keiichi Fukuda. Biochem. Biophys. Res. Commun., 464 (4), 1000-1007 (2015).
Cellular dynamics of neuronal migration in the hippocampus. Kanehiro Hayashi, Ken-ichiro Kubo, Ayako Kitazawa, and Kazunori Nakajima. Front. Neurosci., 9, Article 135 (2015).
Neuronal heterotopias affect the activities of distant brain areas and lead to behavioral deficits. Kazuhiro Ishii, Ken-ichiro Kubo, Toshihiro Endo, Keitaro Yoshida, Seico Benner,Yukiko Ito, Hidenori Aizawa, Michihiko Aramaki, Akihiro Yamanaka, Kohichi Tanaka, Norio Takata, Kenji F. Tanaka, Masaru Mimura, Chiharu Tohyama, Masaki Kakeyama, and Kazunori Nakajima. J. Neurosci., 35 (36), 12432-12445 (2015). (K. Ishii and K. Kubo are co-first authors)
-
2015年9月15日 財経新聞に掲載
「胎児期の脳神経細胞の異常が精神疾患を引き起こす仕組みを明らかに –慶大・石井、久保氏ら」 -
2015年9月12日 KJB検査技師人材バンク臨床検査技師ニュースに掲載
「胎児期の脳神経細胞移動異常がなぜ精神神経症状を引き起こすのか慶大が解明」 -
2016年1月27日 注目論文としてJ. Neurosci.誌のJournal Club欄で紹介され、author responseもオンラインにて掲載
(Highlighted in a Journal Club feature in the January 27 (2016) issue of The Journal of Neuroscience. Author response was also posted online.) http://www.jneurosci.org/content/36/4/1051?etoc -
2016年5月1日、慶應義塾大学病院 医療・健康情報サイト(KOMPAS)、慶應発サイエンスにて紹介
「本来の位置にたどり着けない神経細胞が及ぼす脳への影響」
Reelin has a preventive effect on phencyclidine-induced cognitive and sensory-motor gating deficits. Kazuhiro Ishii, Taku Nagai, Yuki Hirota, Mariko Noda, Toshitaka Nabeshima, Kiyofumi Yamada, Ken-ichiro Kubo, and Kazunori Nakajima. Neurosci. Res., 96, 30-36 (2015). (K. Ishii, T. Nagai, and Y. Hirota are co-first authors)
● Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Mai Yamakawa, Daisuke Ito, Takao Honda, Ken-ichiro Kubo, Mariko Noda, Kazunori Nakajima, and Norihiro Suzuki. Hum. Mol. Genet., 24 (6), 1630-1645 (2015).
-
医学部生の山川眞以さんが筆頭著者になった論文です。
Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis. Takao Kohno, Takao Honda, Ken-ichiro Kubo, Yoshimi Nakano, Ayaka Tsuchiya, Tatsuro Murakami, Hideyuki Banno, Kazunori Nakajima*, and Mitsuharu Hattori*. J. Neurosci., 35 (11), 4776-4787 (2015). (T. Kohno, T. Honda, and K. Kubo are co-first authors) (K. Nakajima and M. Hattori contributed equally to this work and are the corresponding authors)
Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons. Sonja Rakić, Shigeaki Kanatani, David Hunt, Clare Faux, Anna Cariboni, Francesca Chiara, Shabana Khan, Olivia Wansbury, Beatrice Howard, Kazunori Nakajima, Margareta Nikolić, and John G. Parnavelas. Cereb. Cortex, 25 (4), 991-1003 (2015).
Reelin receptors ApoER2 and VLDLR are expressed in distinct spatio-temporal patterns in developing mouse cerebral cortex. Yuki Hirota, Ken-ichiro Kubo, Kei-ichi Katayama, Takao Honda, Takahiro Fujino, Tokuo T. Yamamoto, and Kazunori Nakajima. J. Comp. Neurol., 523 (3), 463-478 (2015).
How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Katsutoshi Sekine, Ken-ichiro Kubo, and Kazunori Nakajima. Neurosci. Res., 86 (September), 50-58 (2014).
Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. Yoshiaki V. Nishimura, Mima Shikanai, Mikio Hoshino, Toshio Ohshima, Yo-ichi Nabeshima, Ken-ichi Mizutani, Koh-ichi Nagata, Kazunori Nakajima, and Takeshi Kawauchi. Development,141 (18), 3540-3550 (2014).
Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte.Hisayuki Hashimoto, Shinsuke Yuasa, HidenoriTabata, Shugo Tohyama, Nozomi Hayashiji, Fumiyuki Hattori, NaotoMuraoka, Toru Egashira, Shinichiro Okata, Kojiro Yae, Tomohisa Seki, Takahiko Nishiyama, Kazunori Nakajima, Asako Sakaue-Sawano, Atsushi Miyawaki, and Keiichi Fukuda. J. Mol. Cell. Cardiol., 72 (July), 241-249 (2014).
Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel “climbing” migration mode during development. Ayako Kitazawa, Ken-ichiro Kubo, Kanehiro Hayashi, Yuki Matsunaga, Kazuhiro Ishii, and Kazunori Nakajima. J. Neurosci., 34 (4), 1115-1126 (2014). (A. Kitazawa, K. Kubo, and K. Hayashi are co-first authors)
-
2014年1月22日 化学工業日報 朝刊6面にて紹介
「慶応大が海馬の形成過程解明」 -
2014年1月22日 日経プレスリリースに掲載
「慶大、脳の海馬が形成される過程で神経細胞が機能する場所まで移動する様式を解明」 -
2014年1月22日 マイナビニュースにて紹介
「慶応大、脳の海馬を担う神経細胞が誕生後に海馬まで移動する際の方式を解明」 -
2014年1月22日
WEBジャーナルOPTRONICSにて紹介
「慶應大、脳の海馬で誕生した神経細胞の移動様式を明らかに」 -
2014年1月24日
医療情報サイトm3.comの臨床ダイジェストハイライト、m3.com編集者オススメ記事にて紹介
(「脳・神経科医師にもっとも見られたコンテンツランキング」臨床記事の1位に<集計日1/25〜27>)
「慶大、海馬形成過程の観察成功:ロッククライマーのようにジグザグ移動」 -
2014年1月25日
Mental Styleにて紹介
「まるでロッククライマーのよう、海馬で誕生した脳神経細胞―慶應義塾大学の研究成果とは」 -
2014年3月27日
Natureから訪問取材を受け、「特集記事」にて紹介
「海馬の神経細胞がロッククライミングのように移動して積層することを解明 慶應義塾大学医学部解剖学教室 仲嶋一範教授」
TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Mayumi Okamoto, Takashi Namba, Tomoyasu Shinoda, Takefumi Kondo, Tadashi Watanabe, Yasuhiro Inoue, Kosei Takeuchi, Yukiko Enomoto, Kumiko Ota, Kanako Oda, Yoshino Wada, Ken Sagou, Kanako Saito, Akira Sakakibara, Ayano Kawaguchi, Kazunori Nakajima, Taiji Adachi, Toshihiko Fujimori, Masahiro Ueda, Shigeo Hayashi, Kozo Kaibuchi, and Takaki Miyata. Nat. Neurosci., 16 (11), 1556-1566 (2013).
DISC1: a key lead in studying cortical development and associated brain disorders. Soumya Narayan, Kazunori Nakajima, and Akira Sawa. The Neuroscientist, 19 (5), 451-464 (2013).
Screening for candidate genes involved in the production of mouse subventricular zone proliferative cells and an estimation of their changes in evolutionary pressure during primate evolution. Hidenori Tabata, Hachiya Tsuyoshi, Koh-ichi Nagata, Yasubumi Sakakibara, and Kazunori Nakajima. Front. Neuroanat., Volume 7, Article 24 (12 pages) , (2013).
Cell polarity and initiation of migration (Chapter 12). Katsutoshi Sekine, Hidenori Tabata, and Kazunori Nakajima. Comprehensive Developmental Neuroscience: Cellular Migration and Formation of Neuronal Connections (J.L.R. Rubenstein, P. Rakic, ed.), Amsterdam, Academic Press, 231-244 (2013).
Dab1-mediated colocalization of multi-adaptor protein CIN85 with Reelin receptors, ApoER2 and VLDLR, in neurons.Takahiro Fuchigami, Yutaka Sato1, Yuya Tomita1, Tetsuya Takano, Shin-ya Miyauchi, Yukinori Tsuchiya, Taro Saito, Ken-ichiro Kubo, Kazunori Nakajima, Mitsunori Fukuda, Mitsuharu Hattori, and Shin-ichi Hisanaga. Genes to Cells, 18 (5), 410-424 (2013).
Cortical excitatory neurons become protected from cell division during neurogenesis in an Rbfamily-dependent manner. Mio Oshikawa, Kei Okada, Kazunori Nakajima, and Itsuki Ajioka. Development, 140 (11), 2310-2320 (2013).
Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Yuko Gonda, William D. Andrews, Hidenori Tabata, Takashi Namba, John G. Parnavelas, Kazunori Nakajima, Shinichi Kohsaka, Carina Hanashima and Shigeo Uchino. Cereb. Cortex, 23 (6), 1495-1508 (2013).
Axon guidance mechanisms for establishment of callosal connections. Mitsuaki Nishikimi, Koji Oishi, and Kazunori Nakajima. Special Issue: “Physiology and Plasticity of Interhemispheric Connections,” Neural Plast., Volume 2013, Article ID 149060 (7 pages), (2013).
-
現在研修医をしている錦見満曉君が、学部学生時代に筆頭筆者として発表した原著論文(Nishikimi et al., J. Neurosci., 2011)の内容を含め、関連領域についてレビューした依頼総説です。
RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Chiaki Ohtaka-Maruyama, Shinobu Hirai, Akiko Miwa, Julian lk-Tsen Heng, Hiroshi Shitara, Rie Ishii, Choji Taya, Hitoshi Kawano, Masataka Kasai, Kazunori Nakajima, and Haruo Okado. Cell Reports, 3 (2), 1-14 (2013).
Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Katsutoshi Sekine, Takeshi Kawauchi, Ken-ichiro Kubo, Takao Honda, Joachim Herz, Mitsuharu Hattori, Tatsuo Kinashi, and Kazunori Nakajima. Neuron, 76 (2), 353-369 (2012). 「プレスリリース」
-
2012年10月18日 日経プレスリリースに掲載
「慶大、大脳の神経細胞が正しく配置されるメカニズムを発見」 -
2012年10月18日 日刊工業新聞朝刊24面にて紹介
「慶大、脳神経形成を解明—たんぱく質が配置制御」 -
2012年10月18日 マイナビニュースにて紹介
「慶応大、大脳の神経細胞が正しく配置されるメカニズムを発見」 -
2012年10月29日 カウンセリングストリートのニュース欄にて紹介
「統合失調症の病態解明(心の病ではなく脳内の異常)に前進
~慶応大、大脳の神経細胞が正しく配置されるメカニズムを発見~」
● A phosphatidylinositol lipids system, Lamellipodin and Ena/VASP regulate dynamic morphology of multipolar migrating cells in the developing cerebral cortex. Satoshi Yoshinaga, Takahiro Ohkubo, Shinji Sasaki, Mutsuo Nuriya, Yukino Ogawa, Masato Yasui, Hidenori Tabata, and Kazunori Nakajima. J. Neurosci., 32 (34), 11643-11656 (2012).
-
筆頭著者の吉永怜史君が、学部生時代に中心になって行った研究です。
-
2012年8月22日 キャリアブレインCB newsにて紹介
-
「発達障害やてんかんの治療法開発へ – 慶大、神経細胞制御の仕組み解明」
-
-
2012年8月22日 マイナビニュースにて紹介
-
「誕生直後の興奮性神経細胞は積極的に周囲を調べて脳内を移動する - 慶應大」
-
Leucine-rich glioma inactivated 1 (Lgi1), an epilepsy-related secreted protein, has a nuclear localization signal and localizes both to the cytoplasm and nucleus of the caudal ganglionic eminence neurons. Sayaka Kusuzawa, Takao Honda, Yuko Fukata, Masaki Fukata, Shigeaki Kanatani, Daisuke H. Tanaka, and Kazunori Nakajima. Eur. J. Neurosci., 36 (3), 2284-2292 (2012).
Involvement of mGluR5-signaling in activity-related proliferation of adult hippocampal neural stem cells. Rokuya Nochi, Tomomasa Kato, Jun Kaneko, Yoshie Itou, Hiroshi Kuribayashi, Satoshi Fukuda, Yasushi Terazono, Ayumu Matani, Shigeaki Kanatani, Kazunori Nakajima, and Tatsuhiro Hisatsune. Eur. J. Neurosci., 36 (3), 2273-2283 (2012).
Migratory pathways of GABAergic interneurons when they enter the neocortex. Daisuke H. Tanaka and Kazunori Nakajima. Eur. J. Neurosci. , 35 (11), 1655-1660 (2012).
GABAergic interneuron migration and the evolution of the neocortex. Daisuke H. Tanaka and Kazunori Nakajima. Dev. Growth Differ., 54 (3), 366-372 (2012).
● Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex. Hidenori Tabata, Satoshi Yoshinaga, and Kazunori Nakajima. Exp. Brain Res., 216 (2), 161-168 (2012).
-
医学部生の吉永怜史君が第二著者になっています。
● Segregation and pathfinding of callosal axons through EphA3 signaling. Mitsuaki Nishikimi, Koji Oishi, Hidenori Tabata, Kenichi Torii, and Kazunori Nakajima. J. Neurosci., 31(45), 16251-16260 (2011).
-
医学部生の錦見満曉君が筆頭著者になっている論文です。同じく学部生の鳥居健一君も貢献してくれました。
-
“This Week in The Journal” で紹介されました。
GABAergic precursor transplantation into the prefrontal cortex prevents phencyclidine-induced cognitive deficits. Daisuke H. Tanaka, Kazuya Toriumi, Ken-ichiro Kubo, Toshitaka Nabeshima, and Kazunori Nakajima. J. Neurosci., 31 (40), 14116-14125 (2011).
-
2011年10月7日 マイコミジャーナル(マイナビ<旧:毎日コミュニケーションズ>)にて紹介
-
「慶応大など、薬剤誘発性の認知機能障害の予防手段を発見」
-
-
2011年10月6日 化学工業日報朝刊8面にて紹介
-
「統合失調症の認知障害 抑制性神経細胞が予防 慶大、マウス実験で確認」
-
-
2011年10月21日 Schizophrenia Research ForumのResearch Newsとしてとりあげられました。
-
2011年11月4日 日刊工業新聞朝刊13面にて紹介
-
「統合失調症治療に朗報 認知機能の低下防ぐ手法発見」
-
N-Cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Mima Shikanai, Kazunori Nakajima, and Takeshi Kawauchi. Communicative & Integrative Biology, 4 (2), 326-330 (2011).
Laminar and areal expression of Unc5d and its role in cortical cell survival. Makoto Takemoto, Yuki Hattori, Hong Zhao, Haruka Sato, Atsushi Tamada, Shinji Sasaki, Kazunori Nakajima, and Nobuhiko Yamamoto. Cereb. Cortex, 21 (8),1925-1934 (2011).
Basement membrane-like matrix sponge for the three-dimensional proliferation culture of differentiated retinal horizontal interneurons. Itsuki Ajioka, Shizuko Ichinose, Kazunori Nakajima, and Hidehiro Mizusawa. Biomaterials, 32 (25), 5765-5772 (2011).
PDK1-Foxo1 in Agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure. Yongheng Cao, Masanori Nakata, Shiki Okamoto, Eisuke Takano, Toshihiko Yada, Yasuhiko Minokoshi, Yukio Hirata, Kazunori Nakajima, Kristy Iskandar, Yoshitake Hayashi, Wataru Ogawa, Gregory S. Barsh, Hiroshi Hosoda, Kenji Kangawa, Hiroshi Itoh, Tetsuo Noda, Masato Kasuga, and Jun Nakae. PLoS ONE, 6(4), e18324 (2011). (doi:10.1371/journal.pone.0018324)
The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out”lamination in the neocortex. Katsutoshi Sekine, Takao Honda, Takeshi Kawauchi, Ken-ichiro Kubo, and Kazunori Nakajima. J. Neurosci., 31 (25), 9426-9439 (2011).
(Adopted for the journal cover illustration)
Disrupted-in-Schizophrenia-1 (Disc1) is necessary for migration of the pyramidal neurons during mouse hippocampal development. Kenji Tomita, Ken-ichiro Kubo, Kazuhiro Ishii, and Kazunori Nakajima. Hum. Mol. Genet., 20 (14), 2834-2845 (2011). (K. Tomita and K. Kubo are co-first authors)
-
2011年5月26日 日経産業新聞朝刊11面(先端技術面)にて紹介
-
「脳の海馬正しく形成 必要な遺伝子特定 統合失調症と関連も」
-
● Regulation of cortical neuron migration by the Reelin signaling pathway. Takao Honda, Kazuma Kobayashi, Katsuhiko Mikoshiba, and Kazunori Nakajima. Neurochem. Res., 36 (7), 1270-1279 (2011).
(This paper is one of the most downloaded articles in this journal as of March, 2012.)
-
医学部生の小林和馬君が第二著者になっています。
Reelin inhibits migration of sympathetic preganglionic neurons in the spinal cord of the chick. Yee Ping Yip, Guangdou Zhou, Ken-ichiro Kubo, Kazunori Nakajima, and Joseph W. Yip * . J. Comp. Neurol., 519 (10), 1970-1978 (2011) .
Changes in cortical interneuron migration contribute to the evolution of the neocortex. Daisuke H. Tanaka, Ryo Oiwa, Erika Sasaki, and Kazunori Nakajima. Proc. Natl. Acad. Sci. U.S.A., 108 (19), 8015-8020 (2011). 「プレスリリース」
-
2011年4月26日 日刊工業新聞朝刊19面にて紹介
-
「神経細胞の移動能力 - 哺乳類の進化に関与」
-
-
2011年4月29日 マイコミジャーナル(毎日コミュニケーションズ)にて紹介
-
「慶応大、大脳新皮質を哺乳類が進化の過程で獲得した仕組みの一端を解明」
-
http://journal.mycom.co.jp/news/2011/04/29/007/index.html?route=blog
-
-
2011年5月13日 週刊科学新聞3面(科学技術総合欄)にて紹介
-
「大脳新皮質の進化の仕組み解明 - 抑制性神経細胞の移動能変化が鍵を握る」
-
-
Newton 2011年8月号(6月25日発売)に紹介記事掲載 (北京版、台湾版、韓国版にも掲載予定)
-
「脳の進化は細胞の動きがカギ? - 哺乳類がもつ、独自の知能につながった変化を発見」
-
Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction. Yuichi Tamura, Keisuke Matsumura, Motoaki Sano, Hidenori Tabata, Kensuke Kimura, Masaki Ieda, Takahide Arai, Yohei Ohno, Hideaki Kanazawa, Shinsuke Yuasa, Ruri Kaneda, Shinji Makino, Kazunori Nakajima, Hideyuki Okano, and Keiichi Fukuda. Arterioscler. Thromb. Vasc. Biol., 31 (3), 582-589 (2011).
DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Koko Ishizuka, Atsushi Kamiya, Edwin C. Oh, Hiroaki Kanki, Saurav Seshadri, Jon F. Robinson, Hannah Murdoch, Allan J. Dunlop, Ken-ichiro Kubo, Keiko Furukori, Beverly Huang, Mariela Zeledon, Akiko Hayashi-Takagi, Hideyuki Okano, Kazunori Nakajima, Miles D. Houslay, Nicholas Katsanis, and Akira Sawa. Nature, 473(7345), 92-96 (2011).
Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. Kazunobu Sawamoto, Yuki Hirota, Clara Alfaro-Cervello, Mario Soriano-Navarro, Xiaoping He, Yoshika Hayakawa-Yano, Masayuki Yamada, Keigo Hikishima, Hidenori Tabata, Akio Iwanami, Kazunori Nakajima, Yoshiaki Toyama, Toshio Itoh, Arturo Alvarez-Buylla, Jose Manuel Garcia-Verdugo, and Hideyuki Okano. J. Comp. Neurol., 519 (4), 690-713 (2011). (K. Sawamoto, Y. Hirota, C. Alfaro-Cervello, M. Soriano-Navarro contributed equally to this work)
● Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Ken-ichiro Kubo, Kenji Tomita, Asuka Uto, Keisuke Kuroda, Saurav Seshadri, Jared S. Cohen, Kozo Kaibuchi, Atsushi Kamiya, and Kazunori Nakajima. Biochem. Biophys. Res. Commun., 400 (4), 631-637 (2010). (K. Kubo and K. Tomita are co-first authors)
-
医学部生の宇都飛鳥君が第三著者になっています。
CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin- and neuropeptide Y-expressing GABAergic interneurons. Daisuke H. Tanaka, Sakae Mikami, Takashi Nagasawa, Jun-ichi Miyazaki, Kazunori Nakajima and Fujio Murakami. Cereb. Cortex, 20 (12), 2810-2817 (2010) .
● Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent "inside-out" alignment in the developing neocortex. Ken-ichiro Kubo, Takao Honda, Kenji Tomita, Katsutoshi Sekine, Kazuhiro Ishii, Asuka Uto, Kazuma Kobayashi, Hidenori Tabata, and Kazunori Nakajima. J. Neurosci., 30 (33), 10953-10966 (2010).
-
医学部生の宇都飛鳥君と小林和馬君が共著者になっています。
-
This Week in The Journalで紹介されました http://www.jneurosci.org/
(Adopted for the journal cover illustration)
Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-Cadherin trafficking. Takeshi Kawauchi, Katsutoshi Sekine, Mima Shikanai, Kaori Chihama, Kenji Tomita, Ken-ichiro Kubo, Kazunori Nakajima, Yo-ichi Nabeshima, and Mikio Hoshino. Neuron, 67 (4), 588-602 (2010).
Inhibition of N-methyl-d-aspartate receptor activity resulted in aberrant neuronal migration caused by delayed morphological development in the mouse neocortex. Shigeo Uchino, Takae Hirasawa, Hidenori Tabata, Yuko Gonda, ChikakoWaga, Yumiko Ondo, Kazunori Nakajima, and Shinichi Kohsaka. Neuroscience, 169 (2), 609-618 (2010). (S. Uchino, T. Hirasawa, and H. Tabata are co-first authors.)
● Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Minae Niwa, Atsushi Kamiya, Rina Murai, Ken-ichiro Kubo, Aaron J Gruber, Kenji Tomita, Lingling Lu, Shuta Tomisato, Hanna Jaaro-Peled, Saurav Seshadri, Hideki Hiyama, Beverly Huang, Kazuhisa Kohda, Yukihiro Noda, Patricio O’Donnell, Kazunori Nakajima, Akira Sawa, and Toshitaka Nabeshima. Neuron, 65 (4), 480-489 (2010).
-
医学部生の富里周太君が共著者になっています。
Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex. Yoshiaki V. Nishimura, Katsutoshi Sekine, Kaori Chihama, Kazunori Nakajima, Mikio Hoshino, Yo-ichi Nabeshima, and Takeshi Kawauchi. J. Biol. Chem., 285 (8), 5878-5887 (2010).
Role of dual leucine zipper-bearing kinase (DLK/MUK/ZPK) in axonal growth. Kaoru Eto, Takeshi Kawauchi, Makiko Osawa, Hidenori Tabata, and Kazunori Nakajima. Neurosci. Res., 66, 37-45 (2010)..
Downregulation of functional Reelin receptors in projection neurons implys that primary Reelin action occurs at early/pre-migratory stages. Takayuki Uchida, Atsushi Baba, F. Javier Perez-Martinez, Terumasa Hibi, Takaki Miyata, Juan M. Luque, Kazunori Nakajima, and Mitsuharu Hattori. J. Neurosci., 29 (34), 10653-10662 (2009).
Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Koji Oishi, Kenji Watatani, Yasuhiro Itoh, Hideyuki Okano, Francois Guillemot, Kazunori Nakajima, and Yukiko Gotoh. Proc. Natl. Acad. Sci. U.S.A., 106 (31), 13064-13069 (2009).
The transcriptional repressor RP58 is crucial for proper cell-division patterning and neuronal survival in the developing cortex. Haruo Okado, Chiaki Ohtaka-Maruyama, Yoshinobu Sugitani, Yuko Fukuda, Reiko Ishida, Shinobu Hirai, Akiko Miwa, Akiyo Takahashi, Katsunori Aoki, Keijo Mochida, Osamu Suzuki, Takao Honda, Kazunori Nakajima, Masaharu Ogawa, Toshio Terashima, Junichiro Matsuda, Hitoshi Kawano, and Masataka Kasai. Dev. Biol., 331 (2), 140-151 (2009).
In utero electroporation: assay system for migration of cerebral cortical neurons. Hidenori Tabata and Kazunori Nakajima. Electroporation and Sonoporation in Developmental Biology (Editor: Harukazu Nakamura), Springer, 143-152 (2009).
Neurogenesis. Koji Oishi and Kazunori Nakajima. Encyclopedia of Neuroscience (Editors: Marc D. Binder, Nobutaka Hirokawa and Uwe Windhorst), Springer, 2673-2676 (2009).
Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Hidenori Tabata, Shigeaki Kanatani, and Kazunori Nakajima. Cereb. Cortex, 19 (9), 2092-2105 (2009).
COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. Shigeaki Kanatani, Masato Yozu, Hidenori Tabata, and Kazunori Nakajima. J. Neurosci., 28 (50), 13582-13591 (2008).
Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Atsushi Kamiya, Perciliz L. Tan, Ken-ichiro Kubo, Caitlin Engelhard, Koko Ishizuka, Akiharu Kubo, Sachiko Tsukita, Ann E. Pulver, Kazunori Nakajima, Nicola G. Cascella, Nicholas Katsanis, and Akira Sawa. Arch. Gen. Psychiatry, 65 (9), 996-1006(2008).
Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis. Gaelle Friocourt, Shigeaki Kanatani, Hidenori Tabata, Masato Yozu, Takao Takahashi, Mary Antypa, Odile Raguenes, Jamel Chelly, Claude Ferec, Kazunori Nakajima, and John G. Parnavelas. J. Neurosci., 28 (22), 5794-5805 (2008). (G. Friocourt and S. Kanatani are co-first authors.)
The cortical subventricular zone-specific molecule Svet1 is part of the nuclear RNA coded by the putative Netrin receptor gene Unc5d and is expressed in multipolar migrating cells. Shinji Sasaki, Hidenori Tabata, Kashiko Tachikawa and Kazunori Nakajima. Mol. Cell. Neurosci., 38 (4), 474-483, (2008).
Labeling embryonic mouse central nervous system cells by in utero electroporation. Hidenori Tabata and Kazunori Nakajima. Develop. Growth Differ., 50 (6), 507-511 (2008).
Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Barbara Carletti, Ian M Williams, Ketty Leto, Kazunori Nakajima, Lorenzo Magrassi, and Ferdinando Rossi. Dev. Biol., 317 (1), 147-160 (2008).
Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Kashiko Tachikawa, Shinji Sasaki, Takuya Maeda, and Kazunori Nakajima. Neurosci. Res., 60 (2), 135-146 (2008).
Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Masato Yozu, Hidenori Tabata, Norbert Koenig, and Kazunori Nakajima. Dev. Neurosci., 30 (1-3), 105-116 (2008).
Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the “inside and outside” pattern of cell sorting. Takuya T Maeda, Itsuki Ajioka, and Kazunori Nakajima. BMC Systems Biology, 1, 43 (16 pages) (2007).
Regulation of the interaction of Disabled-1 with CIN85 by phosphorylation with Cyclin-dependent kinase 5. Yutaka Sato, Masato Taoka, Nami Sugiyama, Kenichiro Kubo, Takahiro Fuchigami, Akiko Asada, Taro Saito, Kazunori Nakajima, Toshiaki Isobe, and Shin-ichi Hisanaga. Genes to Cells,12 (12), 1315-1327 (2007).
Control of tangential/non-radial migration of neurons in the developing cerebral cortex. Kazunori Nakajima. Neurochem. Int., 51 (2-4), 121-131 (2007).
The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling. Yoshimi Nakano, Takao Kohno, Terumasa Hibi, Shiori Kohno, Atsushi Baba, Katsuhiko Mikoshiba, Kazunori Nakajima, and Mitsuharu Hattori. J. Biol. Chem., 282 (28), 20544-20552 (2007).
Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Toshio Ohshima, Motoyuki Hirasawa, Hidenori Tabata, Tetsuji Mutoh, Tomoko Adachi, Hiromi Suzuki, Keiko Saruta, Takuji Iwasato, Shigeyoshi Itohara, Mitsuhiro Hashimoto, Kazunori Nakajima, Masaharu Ogawa, Ashok B. Kulkarni and Katsuhiko Mikoshiba. Development, 134 (12), 2273-2282 (2007).
● Expression profiles of Insulin-like growth factor binding protein-like 1 in the developing mouse forebrain. Yuko Gonda, Hitoshi Sakurai, Yukio Hirata, Hidenori Tabata, Itsuki Ajioka, and Kazunori Nakajima. Gene Expr. Patterns,7 (4), 431-440 (2007).
-
医学部生の櫻井準君が第二著者になっています。
Mouse Disabled1 (Dab1) is a nucleocytoplasmic shuttling protein. Takao Honda and Kazunori Nakajima. J. Biol. Chem., 281 (50), 38951-38965 (2006).
Large-scale correlation of DNA accession numbers to the cDNAs in the FANTOM full-length mouse cDNA clone set. Itsuki Ajioka*, Takuya Maeda*, and Kazunori Nakajima. Keio J. Med., 55 (3), 107-110 (2006). (*equal contributors)
(The full correlation table between mouse GeneChip clones and FANTOM clones is available here as the Supplementary table 1 of this paper. )
Identification of ventricular-side-enriched molecules regulated in a stage-dependent manner during cerebral cortical development. Itsuki Ajioka, Takuya Maeda, and Kazunori Nakajima. Eur. J. Neurosci., 23(2), 296-308 (2006).
A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Atsushi Kamiya, Ken-ichiro Kubo, Toshifumi Tomoda, Manabu Takaki,Richard Youn, Yuji Ozeki, Naoya Sawamura, Una Park, Chikako Kudo, Masako Okawa, Christopher A. Ross, Mary E. Hatten, Kazunori Nakajima, and Akira Sawa. Nature Cell Biol.,7(12), 1167-1178 (2005).
(Science誌の2005年BREAKTHROUGH OF THE YEARの第5位に"Miswiring the Brain"が選ばれ、本論文が引用されました。)
Switching of α-catenin from αE-catenin in the cortical ventricular zone to αN-catenin II in the intermediate zone. Itsuki Ajioka and Kazunori Nakajima. Dev. Brain Res., 160(1),106-111 (2005).
(Adopted for the journal cover illustration)
The caudal migratory stream: A novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. Masato Yozu, Hidenori Tabata, and Kazunori Nakajima. J. Neurosci., 25 (31), 7268-7277 (2005).
(Adopted for the journal cover illustration)
Birthdate-dependent-segregation of the mouse cerebral cortical neurons in reaggregation cultures. Itsuki Ajioka and Kazunori Nakajima. Eur. J. Neurosci., 22 (2), 331-342 (2005).
Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain. Chikako Kudo, Itsuki Ajioka, Yukio Hirata, and Kazunori Nakajima. J. Comp. Neurol., 487 (3), 255-269 (2005).
Neuronal migration in cortical development. Shigeaki Kanatani, Hidenori Tabata, and Kazunori Nakajima. J. Child Neurol., 20 (4), 274-279 (2005).
Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Masato Yozu, Hidenori Tabata, and Kazunori Nakajima. Neurosci. Res., 49 (4), 395-403 (2004).
(Adopted for the journal cover illustration)
The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Yusuke Hirabayashi, Yasuhiro Itoh, Hidenori Tabata, Kazunori Nakajima, Tetsu Akiyama, Norihisa Masuyama and Yukiko Gotoh. Development, 131 (12), 2791-2801 (2004).
Components of the Reelin signaling pathway are expressed in the spinal cord. Yee Ping Yip, Christine Capriotti, Susan Magdaleno, David Benhayon, Tom Curran, Kazunori Nakajima, and Joseph W. Yip. J. Comp. Neurol., 470 (2), 210-219 (2004).
Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. Hidenori Tabata and Kazunori Nakajima. J. Neurosci., 23 (31), 9996-10001 (2003).
Segregation and coactivation of developing neocortical layer 1 neurons. Takeshi Soda, Ryo Nakashima, Dai Watanabe, Kazunori Nakajima, Ira Pastan, and Shigetada Nakanishi. J. Neurosci., 23 (15), 6272-6279 (2003).
Cellular and molecular mechanisms of neuronal migration in neocortical development. Takao Honda, Hidenori Tabata, and Kazunori Nakajima. Sem. in Cell & Develop. Biol., 14 (3), 169-174 (2003).
Cell and molecular mechanisms that control cortical layer formation in the brain. Ken-ichiro Kubo and Kazunori Nakajima. Keio J. Med., 52 (1), 8-20 (2003).
Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. Hidenori Tabata and Kazunori Nakajima. J. Neurosci. Res., 69, 723-730, (2002).
Secreted Reelin molecules form homodimers. Ken-ichiro Kubo, Katsuhiko Mikoshiba, and Kazunori Nakajima. Neurosci. Res., 43, 381-388 (2002).
Efficient in utero gene transfer system to the developing mouse brains using electroporation-- Visualization of neuronal migration in the developing cortex. Hidenori Tabata and Kazunori Nakajima. Neuroscience, 103, 865-872 (2001).
Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Naoko Utsunomiya-Tate, Ken-ichiro Kubo, Shin-ichi Tate, Masatsune Kainosho, Eisaku Katayama, Kazunori Nakajima*, and Katsuhiko Mikoshiba. Proc. Natl. Acad. Sci. U.S.A., 97, 9729-9734 (2000). (*corresponding author)
Reelin controls position of autonomic neurons in the spinal cord. Joseph W. Yip, Yee Ping L. Yip, Kazunori Nakajima, Christine Capriotti. Proc. Natl. Acad. Sci. U.S.A., 97, 8612-8616 (2000).
The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Toshio Kojima, Kazunori Nakajima*, and Katsuhiko Mikoshiba. Mol. Brain Res., 75, 121-127 (2000). (*corresponding author)
Thyroid hormone regulates reelin and dab1 expression during brain development. Manuel Alvarez-Dolado, Monica Ruiz, Jose A. del Rio, Soledad Alcantara, Ferran Burgaya, Michael Sheldon, Kazunori Nakajima, Juan Bernal, Brian W. Howell, Tom Curran, Eduardo Soriano, and Alberto Munoz. J. Neurosci., 19, 6979-6993 (1999).
Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. S. Hossein Fatemi, Effat-Sadat Emamian, David Kist, Robert W. Sidwell, Kazunori Nakajima, Pervez Akhter, Anna Shier, Soheil Sheikh, and K. Bailey. Molecular Psychiatry, 4, 145-154 (1999).
Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. Victor Borrell, Jose A. Del Rio, Soledad Alcantara, Michele Derer, Albert Martinez, Gabriella D'Arcangelo, Kazunori Nakajima, Katsuhiko Mikoshiba, Paul Derer, Tom Curran, and Eduardo Soriano. J. Neurosci., 19, 1345-1358 (1999).
Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Dennis S. Rice, Michael Sheldon, Gabriella D'Arcangelo, Kazunori Nakajima, Dan Goldowitz, and Tom Curran. Development, 125, 3719-3729 (1998).
A truncated Reelin protein is produced but not secreted in the "Orleans" reeler mutation (Relnrl-Orl). Vinciane de Bergeyck, Kazunori Nakajima*, C. Lambert de Rouvroit, B. Naerhuyzen, Andre M. Goffinet, Takaki Miyata, Masaharu Ogawa, and Katsuhiko Mikoshiba. Mol. Brain Res., 50, 85-90 (1997). (*co-first author and corresponding author)
A novel neurological mutation of mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/Reelin. Hiroyuki Yoneshima, Eiichiro Nagata, Mineo Matsumoto, Maki Yamada, Kazunori Nakajima, Takaki Miyata, Masaharu Ogawa, and Katsuhiko Mikoshiba. Neurosci. Res., 29, 217-223 (1997).
scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Michael Sheldon, Dennis Rice, Gabriella D'Arcangelo, Hiroyuki Yoneshima, Kazunori Nakajima, Katsuhiko Mikoshiba, Brian W. Howell, Jonathan A. Cooper, Dan Goldowitz, and Tom Curran. Nature, 389, 730-733 (1997).
Disruption of hippocampal development in vivo by CR-50, a monoclonal antibody against Reelin. Kazunori Nakajima*, Katsuhiko Mikoshiba, Takaki Miyata, Chikako Kudo, and Masaharu Ogawa. Proc. Natl. Acad. Sci. U.S.A., 94, 8196-8201 (1997). (*corresponding author)
Regulation of Purkinje cell alignment by Reelin as revealed with CR-50 antibody. Takaki Miyata, Kazunori Nakajima, Katsuhiko Mikoshiba, and Masaharu Ogawa. J. Neurosci., 17, 3599-3609 (1997).
A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Jose A. Del Rio, Bernd Heimrich, Victor Borrell, Eckart Foerster, Alexander Drakew, Soledad Alcantara, Kazunori Nakajima, Takaki Miyata, Masaharu Ogawa, Katsuhiko Mikoshiba, Paul Derer, Michael Frotscher, and Eduardo Soriano. Nature, 385, 70-74 (1997).
Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. Gabriella D'Arcangelo, Kazunori Nakajima, Takaki Miyata, Masaharu Ogawa, Katsuhiko Mikoshiba, and Tom Curran. J. Neurosci., 17, 23-31 (1997).
Astrocyte lineage analysis by detection of GFAP promoter activity in vitro. Noriyuki Morita, Kensuke Nakahira, Hiroko Baba, Hiromi Akita, Tatsuro Kumada, Masaharu Ogawa, Kazunori Nakajima, Mitsuhiro Kawata, Katsuhiko Mikoshiba, and Kazuhiro Ikenaka. Dev. Neurosci., 19, 210-218 (1997).